
Abstract — This paper deals with robust design analysis in 

preliminary design. The proposed approach considers design 

parameters variability. Towards a global robust and 

deterministic optimization we propose a method allowing to 

incorporate the uncertainties (Mean and Standard Deviation) 

as usual design parameters. We compare this method with 

classical Monte-Carlo simulations. 

I. INTRODUCTION 

This paper attempts to consider robust design problem. 

In real engineering, product design problem may be subject 

to various uncertainties appearing everywhere and cannot 

be avoided. Uncertainties mainly influence product 

performances and can lead to wrong products. Uncertainties 

may concern every design parameter, such as new 

environmental conditions, geometrical parameters, material 

properties and so on.  

The main target of robust design is to control product 

performances taking parameter’s variability into account. 

This present paper deals only with design parameter 

variations including material properties. We present in this 

paper how to fill in those objectives in a way that fit with 

optimization. Furthermore, in this work we consider that 

robust design will be attained in preliminary design stage 

dealing with analytical models. They come from FEM/RSM 

[1] or from approximation of physical laws. 

The total time for finding a solution using optimization 

can be approximated by the product of the number of model 

evaluations and the time required for one evaluation. To 

decrease this total time we focus on the evaluation time of 

the model which integrates uncertainties. 

II. ROBUST ANALYSIS METHODS 

Robust design offers methods to make product solutions 

insensitive to variability sources. Given the variations of 

input design parameters, robust analysis methods are 

introduced to compute the variability of the product 

performances (output parameters). Several approaches can 

be used; they involve fuzzy set, interval variables, or 

random variables. We assume here that design parameters 

including material properties can be represented either by 

distributions or by nominal values. 

Methods for robust analysis can be classified into two 

categories: simulation methods that give whole output 

parameter distributions and moments evaluation methods 

that estimate moments of the probability distribution. All 

moments expressions completely characterize the expected 

distribution. 

A. Simulation methods 

The most common simulation method is Monte Carlo 

simulations. This method can be easily implemented but it 

requires 10
4
 to 10

6
 samples to obtain accurate enough 

results [2].Time needed for complex model is too high. To 

reduce time for each model evaluation, Monte Carlo 

simulation can be applied to an approximate model such as 

the Taylor expansions or the Chaos polynomial [3]. It is 

also possible to reduce the number of evaluations using 

Latin Hypercube or Importance Sampling techniques. 

B. Moments estimation 

The Univariate dimension-reduction method [4] uses a 

moment-based quadrature rule for performing numerical 

integration to estimate moments. But analytic links between 

inputs and outputs parameters will be lost, as for simulation 

methods. Those links are necessary when dealing with 

deterministic optimization process. Furthermore, the 

Propagation of moments method [5] introduced in the next 

section gives analytic moments estimation. 

C. The proposed approach 

This last method is best suited to the optimization since it 

gives analytical formulas of the moments based on Taylor 

series expansion. Thus it keeps analytic links between 

inputs and outputs parameters. We have limited this method 

to the evaluation of the two first moments expressions    

and   
 . Mathematical expressions for the Taylor first order 

(1) and for the Taylor second order (2) are:  
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Where   is the model,    are input parameters,   are the 

output parameters,              is the set of input 

parameter’s Means (first moments) and   
  is the parameter 

variances (second moments) of   . 

 

Robust analysis towards robust optimization in engineering design 

L. Picheral
1
, K. Hadj-Hamou

1
, G. Remy

2
, and J. Bigeon

1
 

1
G-SCOP – CNRS UMR 5272; Grenoble INP-UJF; 46 Av. Félix Viallet, 38000 Grenoble - France 

2 
LGEP / SPEE-Labs, CNRS UMR 8507; SUPELEC; Univ. Pierre et Marie Curie P6; Univ. Paris-Sud 11; 

11 rue Joliot Curie, Plateau de Moulon F91192 Gif sur Yvette CEDEX - France 

laura.picheral@grenoble-inp.fr, khaled.hadj-hamou@grenoble-inp.fr, ghislain.remy@lgep.supelec.fr 

jean.bigeon@grenoble-inp.fr 



The global model (Fig. 1) is made of the "initial" one to 

which we add the "model of moments" computed by (1) or 

(2). This new model is an approximate reformulated one.  

 

 

 

 

 

 

 

 

 

 

 

Besides, the "reformulated model" is dedicated to 

optimization and so it must be accurate enough for Means, 

Standard Deviations and their derivatives. 

In the next part we compare on accuracy’s criterion the 

Propagation of moments method for the Taylor second 

order (2) and Monte-Carlo simulations which are the 

reference method. 

III. PROPAGATION OF MOMENTS METHOD ACCURACY 

A. Benchmark : Electrical actuator model 

As a primary test, the Propagation of moments method 

and Monte-Carlo simulations have been compared on a 

design model benchmark. The model has been introduced 

in [6] where a solution is given. The electrical actuator 

model is characterized by 9 non-linear explicit equations, 

21 design continuous parameters, 12 degrees of freedom. 

The details of this model will be developed in the full 

paper. 

B. Modeling procedure 

First, we select input parameters of electrical actuator 

model likely to vary such as geometrical parameters or 

material properties. For Monte-Carlo simulations we 

arbitrarily choose normal distribution for each input 

parameter. Values for parameter’s Mean are extracted from 

[6]. We test the accuracy of these methods for various 

Standard Deviations.   

C. Results  

All output parameters Means and Standard Deviations 

are computed using both Monte-Carlo simulations and the 

Propagation of moments method. Table I presents Monte-

Carlo method for several simulation numbers (10
3
, 10

4
, 10

5
, 

10
6
) and for the output parameter    (useful part volume of 

the electrical device). We give in the first column the input 

parameters Standard Deviations    chosen as a percentage 

of their Means. We take the Monte-Carlo with 10
6
 

simulations as our reference for   and  . We express the 

relative error for each method we studied. 

 Therefore, Table II shows that Propagation of moments 

method using Taylor second order gives results close to 

those obtained using 10
6
 simulations based Monte-Carlo 

(error max 0.083%). It appears that analytical expressions 

for   and   (2) are highly accurate.    

IV. CONCLUSIONS AND PERSPECTIVES 

According to our study, Propagation of moments 

method is accurate enough for optimization purpose. 

The Table II gives criteria to select the appropriate 

robust analysis method regarding the problem encountered. 

Criterion 
Monte-Carlo 

simulations 

Propagation of 

moments method 

Use of deterministic optimization No Yes 

Use of stochastic optimization Yes Yes 

Evaluation number     2 

Need to compute derivatives No Yes 

TABLE  II 
ADVANTAGES AND DRAWBACKS OF THE TWO STUDIED METHODS 

In our case we will use deterministic optimization 

methods to get a robust design. For this purpose, exact 

derivatives have to be evaluated and model evaluation 

number must be as fewer as possible. All these criteria lead 

us to choose the Propagation moments method. 

Various studies and discussions will be given in the 

extended paper, about the sensitivity of the Propagation of 

moments expressions when used in robust optimization 

problems. 
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TABLE I 
RELATIVE ERROR BETWEEN MONTE-CARLO (106), THE PROPAGATION OF MOMENTS METHOD AND OTHER MONTE-CARLO  

 
Reference: Monte-Carlo 

106 
Propagation of moments 

method 
Monte-Carlo 

103 
Monte-Carlo  

104 
Monte-Carlo  

105 

             
          

      error (%)   error (%)   error (%)   error (%)   error (%)   error (%)   error (%)   error (%) 

0,5 6,75 0,658 0 0,015 0,044 2,790 0 1,031 0,015 0,258 

0,83 6,75 1,09 0 0 0,044 1,654 0,015 0,276 0,015 0,276 

1,67 6,76 2,18 0 0 0,089 0,781 0,015 0,046 0 0,184 

3,33 6,76 4,34 0,015 0,023 0,237 1,607 0,089 0,597 0,015 0,413 

5,55 6,77 7,30 0 0,083 0,089 1,830 0,030 0,206 0,015 0,413 

 

Fig. 1. Optimization strategy that incorporate 

uncertainties 
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